
Bewehrung 10,56 und 10

- Die entworfene Klasse des zentrifugierten Betons C40/50 (B50)
- Die durchschnittliche Pflastersteinfestigkeit des Betons im Moment der Kompression :
 - Zentrifugierte Proben f (w cma15) ≥ 42,0 MPa (f (w cma10) ≥ 47,0 MPa)
 - Rütelproben f (cmD15) ≥ 32,0 MPa (f (cmD10) ≥ 35,0 MPa)
- Die Absorptionsfägkeit von Beton ≤ 5%
- Der Betonvolumen 0,552 m³
- Das Gesamtgewicht der Anteile 1365 kg
- Die Spannglieder Formdrähte Ø 7,5 aus Stahl

St 1470/1670 (f (p0,1k) = 1470 MPa, f (pk) = 1670 MPa)

- Die anfängliche Kompressionskraft in einem Spannglied-P(0)= =51,67 kN
- Gewöhnlicher länglicher Stahl gewalzte geriffelte Drähte aus dem Stahl der Klasse A+C, der Art
- z.B. B500SP, RB500, RB500W, St500-b (f (tk) = 550 MPa, f (yk) = 500 MPa)

• Die Querverstärkung (Spirale) — ein glatter kalt gezogener Draht der Art. Z.B. St500 - b (f (tk) = 550 MPa, f (yk) = 500 MPa)

- Die nominale Zugbänderisolierung und des länglichen Stahls Cnom = 25 (+10 -5) mm
- Die nominale Spiralenisolierung Cnom = 20 (+10 -5) mm

ANMERKUNGEN:

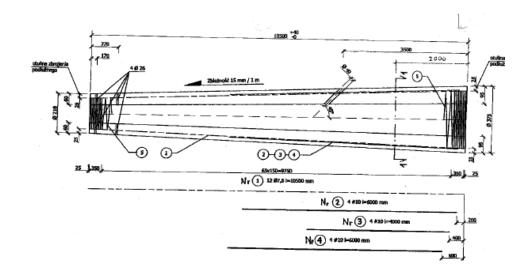
- Die gewöhnliche Stangenverstärkung im Spannteil der Stange ist dafür geeignet um die Stange direkt im Boden zu befestigen,
- Die Stange kann am Säulenfundament mit Stahlbetonplatten befestigt werden U-85 oder U-130
- in dem Querschnitt A-A wurde Platzierung der Öffnungen Ø 40 mm und 4 x Ø 26 mm hinsichtlich einer Längsverstärkung gezeigt
- die Verteilung von 8 Spanngliedern \emptyset 7,5 je 45° resultiert aus der Verteilung von den Öffnungen je 22,5° an den Spannköpfen der 16 Schnüre

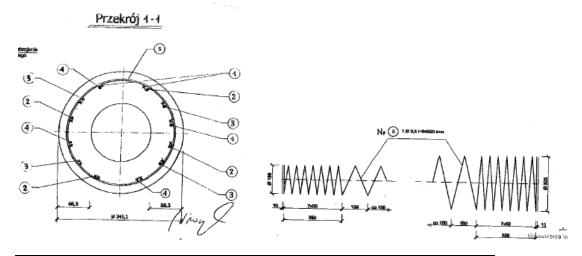
Die Aufstellung der Verstärkung

				Allgemeine Länge		
Stangennr.	Stangen- querschnitt	Stangen- länge	Stangen- anzahl	Die Spannglieder	Gewöhnlicher länglicher Stahl	Die Quer- verstärkung (Spirale)
	mm	m	Stck.	Ø7,5	#8 m	Ø3,5
1	7,5	10,5	8	84		
2	8	4	4		18	
3	3,5	65,25	1			65,25
	Die Summe der Länge	laut ø und	Stahlart (mb)	84	16	65,25
	Die Einzelmasse	(kg/m)		0,347	0,395	0,076
	Die Masse laut	Quer- schnitt	(kg)	29,15	6,32	4,96
	Die Gesamt- masse	vom Stahl	(kg)		40,4	

In der obigen Aufstellung wurde die Masse des Spannstahls, die infolge der Verankerungstechnik (was der Stangenhersteller festlegt) verloren geht, sowie die Masse der inneren Erdung aus dem Draht mit Ø 12mm mit oberen und unteren Schraubenklemmen, nicht erfasst. Das Erdungselement wird laut der persönlichen Lösung ausgeführt.

	BERATUNGS- WERKSTATT FÜR PROJEKTE DER BAUEXPERTISEN COMPEDIUM		Dr. Ing. Jarosław Michałek ul. Sarbinowska 39/4 54-320 Wrocław Tel.: 601 806792
Entworfen von:	Berechtigungen:	Unterschrift:	Datum:
Dr. Ing. Janusz Kubiak	131/84/WBPP		14.03.2012
Dr. Ing. Aleksy Łodo	/		14.03.2012
Dr. Ing. Jarosław Michałek	/		14.03.2012
	WIRBELSTANGE	E10,5/6	Maßstab: 1:50 / 10
			Abb. ??


- Der zentrifugierte Beton C40/50 (B50)
- Die Pflastersteinfestigkeit des Betons im Moment der Stangenauflösung − R (D10) ≥ 35,0 MPa
- Der Betonvolumen 0,571 m³
- Das Gesamtgewicht der Anteile 1428 kg
- Die Spannglieder Formdrähte Ø 7,5 aus Stahl St 1470/1670 (R (0,2) = 1470 MPa, f (Pk) = 1670 MPa)
- Die anfängliche Kompressionskraft in einem Spannglied P(p0,1) = 51,67 kN
- Gewöhnliche Stahlart gewalzte geriffelte Drähte aus dem Stahl RB500, RB500W, B500SP, St500-b
- Die Querverstärkung (Spirale) mit Widerstandskraft von R (a0,2) ≥ 450 MPa, f (pk) ≥ 500 MPa
- Spannverstärkungsisolierung und des gewöhnlichen Stahls − c (nom) = 25 (+10 − 5) mm


Die Aufstellung der Verstärkung

					Länge laut	Querschnitte	und Stahlarten (m)
Stangennr.	Querschnitt	Länge	Stangen- anzahl	Allgemeine Länge	Die Spannglieder	RB500 St 500-b	Der Draht R(?)≥450MPa R(?)≥500MPa
	Ø (mm)	L (m)	(Stck.)	(m)	Ø7,5	#10	Ø3,5
1	7,5	10,5	12	126	126		
2	10	6	4	24		24	
3	10	4	4	16		16	
4	10	6	4	24		24	
5	3,5	64,62	1	64,62			64,62
	Die Summe der Länge	laut ø und	Stahlart (mb)		126	64	64,62
	Die Einzelmasse	(kg/m)			0,347	0,617	0,076
	Die Masse laut	Quer- schnitt	(kg)		43,72	39,49	4,91
	Die Gesamt- masse	laut Stahlart	(kg)		43,72	39,49	4,91
	Die Gesamt- masse	vom Stahl	(kg)			88,12	

ACHTUNG! In der obigen Aufstellung wurde die Masse des Spannstahls, die infolge der Verankerungstechnik (was der Stangenhersteller festlegt) verloren geht, nicht erfasst.

Die gewöhnliche Stangenverstärkung RB500 im Spannteil der Stange ist nicht für Transfer der Befestigungselemente in Muffentyp- und Blockfundament mit der Befestigungstiefe von h ≤ 1,50 m geeignet.

	WIRBELSTANGE	E10,5/10	Verstärkung
Pol. Wrocław Bauinstitut	Dr. Ing. Janusz Kubiak Dr. Ing. Aleksy Łodo	Wrocław	A3-Format Maßstab 1:50/10
Bericht "U" Nr.46/2004	Dr. Ing. Jarosław Michałek	2004	Abb. 1